Answer	Explanation
1. Answer is B.	When reacting with sulfide ion (S ^{2–}) iron ion must carry 2+ charge in the formula. (Iron can also assume 3+ charge when the formula will be Fe_2S_3).
2. Answer is D.	Choice-III is the only one that is correct. Choice-I: some molecules are not compounds O ₂ . Choice-II: some elements exist in molecular form such as N ₂ . Choice-IV: some molecular formulas show a multiplicity of the empirical formula.
3. Answer is D.	Adding more water will aid in solubility.
4. Answer is D.	
5. Answer is B.	Alkanes have single bonds in the carbon chain. All inner C-atoms will be bonded to two H atoms while the terminal C-atoms will be bonded to three H atoms to generate the general formula of C_nH_{2n+2} .
6. Answer is E.	The bond between two different nonmetals is considered covalent. The bond is also polar due to the large difference in electronegativity between H and O.
7. Answer is A.	Temperature rise in this problem is $\Delta t = 75 - 55 = 20$ °C. Plug this value in the following formula. q = m x c _p x Δt = 48.2 g Cd x 6.2 $\frac{\text{cal}}{\text{mol}.^{\circ}\text{C}}$ x $\frac{1 \text{ mol } \text{Cd}}{112.4 \text{ g Cd}}$ x 20 °C = 53.17 cal
8. Answer is A.	CH ₄ , N ₂ , and He are all non-polar species. While CO and H ₂ O are both polar and contribute to the higher intermolecular force, H ₂ O displays hydrogen bonding and CO doesn't. Therefore, water possesses the strongest intermolecular forces.
9. Answer is E.	pH = –log [H⁺] = –log [0.0004 <i>M</i>] = – (–4) = 4 This leads to pOH = 14 – 4 = 10. Therefore, [OH⁻] = 1 x 10 ^{−10} <i>M</i> .
10. Answer is C.	Zero Kelvin is absolute zero on the temperature scale. Ideal behavior predicts a gas will have zero volume, as V \propto T (in K) at constant pressure and number of moles.
11. Answer is A.	Alpha rays contain particles of helium ions, He ²⁺ . Since they are heavier among the radioactive rays, they are slower in speed (lower energy) and unable to penetrate a paper barrier.
12. Answer is D.	$0.5 \text{ mg x} \frac{1 \text{ g}}{1000 \text{ mg}} \text{ x} \frac{1,000,000 \mu\text{g}}{1 \text{ g}} = 500 \mu\text{g}$
13. Answer is A.	Comparing the atomic numbers of sodium and chlorine, we find that sodium contains11 protons and chlorine contains 17 protons. The sum of protons is 28. Na ⁺ means that an electron was lost, so the number of electrons is 10. Cℓ ⁻ means that an electron was gained, so the number of electrons is 18. The sum of electrons is 28.
14. Answer is B.	Choice A: 100 g CO ₂ x $\frac{2 \mod 0 - \operatorname{atom}}{44 \operatorname{g} \operatorname{CO_2}}$ = 4.55 mol O-atom Choice B: 100 g H ₂ O x $\frac{1 \mod 0 - \operatorname{atom}}{18 \operatorname{g} \operatorname{H_2O}}$ = 5.56 mol O-atom, the largest value Choice C: 1 mol CO ₂ x $\frac{2 \mod 0 - \operatorname{atom}}{1 \mod 0 - \operatorname{atom}}$ = 2.0 mol O-atom Choice D: 2 mol H ₂ O x $\frac{1 \mod 0 - \operatorname{atom}}{1 \mod H_2O}$ = 2.0 mol O-atom Since 1 mol = 6.022 x 10 ²³ answer B produces the highest number of O-atoms.

2024 ACES Sectional Chemistry Solution Set